My Head is Spinning: Why So Many Op Amps?

Choosing the right or “best” operational amplifier (op amp) for a project can be daunting and overwhelming. Even if you restrict your search to a single vendor, there are likely tens of fairly similar devices to consider, often with new ones released as well. Vendor selection guides can help with broad categories (such as high speed, precision, high voltage) but even these divisions overlap and have ambiguities.

So, why so many op amps? A cynic might say, “It’s because they can,” but that’s really not the reason. Each op amp variation and sub-variation can be costly, requiring changes in one or more factors of design, fabrication, test, qualification, production planning, order fulfillment, packaging, and more.

In contrast, an academic would say the answer to the question is obvious: “It’s because there’s no perfect op amp.” While that is technically correct, it’s not the reason either. In fact, you might not want the ideal op amp, with infinite bandwidth, zero noise, and no other “imperfections” as it is too much of a good thing. To use it in your application, for example, you might need to add an external filter to attenuate external noise from impacting the op amp, rather than relying on the limited bandwidth of the device itself.

The reason that there are so many op amps actually is a consequence of two factors. First, there’s the sheer diversity of applications. Second, there’s the eternal engineering issue of tradeoffs. In the case of op amps – as with so many other components – these tradeoffs are not simple yes/no questions but have subtleties and nuances of degree and priority.

Some applications will tolerate less desirable values for some parameters in order to get truly superior performance in the one or two that really matter in that situation. For example, a precision instrumentation circuit may really, truly need low offset drift over a wide temperature range and be willing to accept some additional dissipation to achieve that goal. Still, the question is always, “How much are you willing to give up elsewhere to meet your primary objective?” If you can get 10% better offset drift performance but at the cost of a 50% increase in some secondary specifications, is it worth it?

Of course, then there’s cost factor: although almost all applications are cost-sensitive, the issue is to what extent is cost a critical factor. If spending a few more cents gets a device with 10% lower noise, is it worth it? The answer is not in an academic textbook, that’s for sure.

Consider two “zero-offset” op amps: the Microchip Technology MCP6V51 and the Texas Instruments OPA735. In addition to other differences, the Microchip device features initial maximum offset of ±15 microvolts (µV) and maximum offset drift of ±36 nanovolts (nV)/°C, (Figure 1). The Texas Instruments part has one-third the initial maximum offset at ±5 µV but about 50% higher maximum offset drift at ±50 nV/°C (Figure 2). So, which one is better?

Figure 1: The input offset voltage vs. ambient temperature is a critical specification in precision op amp applications. Here, it is shown for the Microchip Technology MCP6V51. (Image source: Microchip Technology)

Figure 2: The offset voltage drift is presented in a different way for the OPA735, but is clearly just a few nV/°C. (Image source: Texas Instruments)

The answer is deceptively simple, as it is in many engineering situations: “It depends.” In this case, it depends on how critical that initial offset value is when compared to its drift value, but it may be valid only for one specific application.

The decision on what and how much to give up in order to get what you want is a careful interplay of many factors and judgement, and that’s at the heart of the engineering challenge. It’s often a difficult decision since everyone at the design review may have a legitimately different point of view.

There are countless sets of different application priorities, relative weightings, and the “what you give up to get what you want” decisions that can be made. The good news is that the wide range of choice facilitates finding a very good fit (in most cases). Still, the multiplicity of choices can be overwhelming, and that leads to two possibilities: the designers may just choose the first device that comes close enough, or will just go with a vendor and device used previously and with which they are most comfortable.

Ironically, despite the many op amps already available and constant flow of new ones, many designers, rightly or wrongly, end up going with the one they’re most familiar.

작성자 정보

Image of Bill Schweber

Bill Schweber는 전자 엔지니어로서 전자 통신 시스템에 관한 세 권의 교과서를 집필하고 수백 건의 기술 자료, 의견 칼럼 및 제품 특집 기사를 기고해 왔습니다. 이전에는 EE Times의 다양한 주제별 사이트 관련 기술 웹 사이트 관리자와 EDN의 편집장 및 아날로그 편집자를 역임한 바 있습니다.

Analog Devices, Inc.(아날로그 및 혼합 신호 IC 업계를 선도하는 판매업체)에서는 마케팅 통신(홍보 관련)을 담당했습니다. 결과적으로 Bill은 미디어에 회사 제품, 사례, 메시지를 제공하는 기술적 PR 역할과 이러한 내용을 받는 미디어 역할 모두를 경험했습니다.

Analog의 마케팅 통신을 담당하기 전에는 평판 있는 기술 저널에서 편집장을 역임했으며 제품 마케팅 및 응용 엔지니어링 그룹에서도 근무했습니다. 그 이전에는 Instron Corp.에서 아날로그 및 전력 회로 설계와 재료 시험 기계 제어를 위한 시스템 통합 실무를 담당했습니다.

Bill은 MSEE(메사추세츠 주립대학교) 및 BSEE(컬럼비아 대학교) 학위를 취득한 공인 전문 엔지니어이자 어드밴스드 클래스 아마추어 무선 통신 면허를 보유하고 있습니다. 또한 MOSFET 기본 사항, ADC 선택, LED 구동을 비롯한 다양한 엔지니어링 주제에 관한 온라인 과정을 계획 및 작성하여 제공하고 있습니다.

More posts by Bill Schweber